THIN-LAYER: FLOW OF" NONLINEAR E LASTOVISCOUS FLUID
1IN & FIELD OF CENTRIFUGAL FORCES

N. Kh. Zinnatulhn I. V. Fl,egentov,‘ UDC 532.135
and F. A, Garifullin . ‘

The flow is considered of an _éléstdﬂsébus ﬂuid_' whose deformation state is expressed by
means of kinematic matrices in the form of a thin layer between two rotating coaxial cones
with the same angular velocity.

The rheological equation of state for a nonlinear elastoviscous ﬂuld [1-4]
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has been widely studied lately. X ' . V

_ The kinematic matrices By, depend on the gradients of velocities, accelerations and higher time
derivatives of velocity; peff. py are functions of the invariants B, ,.

For an incompressible medium the matmx B, is equxvalent to the classical velocity tensor of shear-
ing strain for a Newtonian fluid. :

The coefficient of effective viscosity can be written as [5]

1T F

—_ e e gm p x
Fig.1 o o Fig. 2

Fig. 1. Flow diagram.

Fig. 2. Graphsofy f(x) Hn=0.1 2)02 3) 0.4;4) 0.6; 5) 0.8; 6) 1.0;
7) 1.4;8) 1.9, .
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Fig. 3. The relation y = f(x): a) polyacrylamide solution
at K = 15 dyne - sec®/cm?, n = 0.56; b) the same at

K = 3.15 dyne - secn/cmz, n =0.66. The points show ex-
perimental results (1) flat nozzle of 80 mm diam.; 2x flat
nozzle of 100 mm diam.; 3) conicalnozzle of 80 mm diam.,
o = 60°, Continuous curves represent theoretical data.

Pee= KE™. @)
The coefficient gy determines the magnitude of the expansion (or compression) normal stresses along

the stream lines, It was shown in [6~8] that g, is proportional to the square of viscosity and is given by
the formula ,

@)

The solution is given below of the flow of nonlinear elastoviscous fluid whose rheological state equation is
governed by Eq. (1) in a field of centrifugal forces.

Let there be a nonlinear elastoviscous flow in the form of a thin layer between two rotating coaxial
cones with the same angular velocity (Fig. 1), The generators of the cones are parallel. It is assumed
that: 1) the flow is steady and the fluid incompressible, 2) the distance between the cones is considerably -
smaller than between the generators, 3) the flow is symmetrical relative to the axis of rotation, 4) the
angular velocity is sufficiently high so that gravitation force can be ignored.

The fluid flow is considered in a special coordinate system I, ¢, 5, rigidly fixed to the cone. The
introduced system is orthogonal, its Lamé coefficients being: Hy=1, H 0= r—§ cos o, H 5= 1. By con-
sidering 5/1 << 1 one can write ng =

The differential equations in the adopted coordinate system with the assumptions taken info account
are given by:
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The boundary conditions are:
for §=2, v, =Ug =0,
du, . dug
for 6§=0 —‘(‘35‘——05‘——0- . (7
The body forces consist of the Coriolis and the centrifugal forces:
- F, = (re* — 200,) sina,
Fo = 2wy;sina, ‘ (8)

Fy = (— ro? + 20v,) cos .
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"To find the solution it is assumed that the original functions vy, Vo p are polynomials in the para-
meter 5. By virtue of the flow symmetry they depend only on I and 5. Their form is {9,10,11]:
‘ Lexh
v=0 8 =a,O)+b0H8--cd ",
co e
Vo = Up(l, 8) = ap(l) + bo ()8 +co (N8 ",

p=p.(h)+p,(1)6. ' ©)

By using the boundary conditions (8) the relations (9) can be replaced by:

otl il
u=c(@ " —&"),
n+1 n1
Vg=Cp(H@ " —8 " ). (L0)
To determine v; the relation is used o
Q= 2{vdS.

By inserting the value of \/ from (10) an expression is obtained for the meridional velocity,

ntl n+t1

; Q 24113\ n
dardy =

Equation (5) is used to determine v 0 By using the Karman—Pohlhausen method one obtains the
system of equations
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By evaluating the integrals in Eqs. (12) using the boundary conditions (7) as well as the constancy of the
flow rate per second and by eliminating from these equations ac¢/9l, one obtains after some transforma-
tions the following expression for the sought Cy

pa)sina(—f—a)
e l l 3:rt , 2 - (13)
n-- NP3 =28 o 27T
6°rK(2n+1)( n ) ( w4 _)('a_'%)
Using the notation
co . _ po sin o 77183"
I ey o e 'nal)”(3n+’2 (ﬁ.)“
(n—‘,—l) ( n n+4)4" ’
one obtains from (13)
‘n—1
rm gy T , (14)

Using Fig. 2 one can solve graphically the relation (14) for y if x is known. .

An expression for p is found similarly as in [11} by ignoring the term K/r a/81 [rEn-lavl/aﬁ] in (6)
in view of its smallness compared to pFy.
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Averaging over the thickness one obtains an expression for average velocities from (10) and (11)
Q ¥
T, Ugaye= T,
4nisinab, VE 4l sinad, (t9)
It follows from (15) that for a given state v; 5yeand v , gyearelinearly related

Ulavqa:

The values of the greatest possible flow rate are now determined such that there is no choking. To
this end it is assumed that in the first approximation V=0, 9P /8 << pF,

7
Equation (4) then becomes

d o, \* I[KE'Q [ du \ K2 [ Qv
Fo K2 (% ("0 oo\ L\ —o.
Pl A5 ( a6 ) G, az( a8 > Y ( a8 ) @6)
The boundary conditions are: ‘

fort 6 = 1 §, v, =0;

’ : avl C
The profile is given as
catl |
Ul:Ula (1“' 6 i e ‘\v (18)
U8 )
then the relation between Vi, 55 and vj3ye can be written as
- 2n 1
Upmax = Uzave( P ) . (19)
One obtains from Eq. (16), similarly as in (12), the equation
v 6°~aaﬂ 61<a du, \2
pFyrds — \ K- [ %% 20 ”l " rds
orrane [ (G = G ()
0 a 0
& K [ 8u, \%*
= (2 s =0,
ﬂ o "o | @0)
0

By evaluating the integrals appearing in Eq. (20) and using the boundary conditions (17) and (19) one
obtains

K( 2n -1 ‘)" 2K2(l~n)(2n+1 )2”
n /

: n
v —2n __. ) - Y
(rave ) = (@ave) ™ — 30G,F 351

= 0. @1)

Equation (21) can easily be solved and one is thus able to calculate the value of the flow rate per
second for entry conditions:

1

= . oL . 2)
1‘\"( 2n--1 ) - .
— L 1y T-4
2FST ' ‘
— 2 22 si
In the above 4 = 8(1—mobyaPsine

is the elasticity parameter.
3G,

Urave =

al—

It can be seen from (22) that with the elasticity parameter increasing the value of the average meri-
dional velocity is reduced. For G, = 400, 200, 100 dyhe/cm

2 n=0.5 w=100 sec™, p = 1.02 g/cm?, §,
=0.1 cm, o = 60° one has

l{w:;()w- 0.78; 0.66

dl; ave Gy ==
Experiments were carried out to verify these results. Details of the experiments were described
in [11].

Aqueous solutions of polyacrylamide (PAAM) were taken as examples. A capillary viscometer
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of constant pressure was used to determine the rheological constants,

The experiments were carried out for flat and conical nozzles. ‘The experimental results are shown

in Fig. 3 where it can be seen that the experimental points are convineingly grouped near the theoretical
curve and it can thus be concluded that the rheological state equation used by us can be applied.

NOTATION

) is the hydrostatic pressure;

I is the identity matrix; _

K,n are the rheological fluid constants;

E is the second invariant of strain rate tensor;

Gy is the initial modulus of high elasticity;

o is the stress tensor;

Hy, Hy, H;  are the Lamé coefficients;

o is the fluid density;

L, ¢ 5, aré the cone generator, length, distance from axis to fluid particle M;

T is the distance between surface and axis of revolution;

20 is the cone vertex angle;

Fy, F(p, F 5 are the projections of body forces in direetions I, ¢, andé respectively;

vy is the meridional velocity;

\ is the lag velocity;

254 is the distance between cones; ‘

w is the angular velocity of revolution of conic surfaces;

Q is the fluid flow rate per sec.;

S is the cross section areas between cones.
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